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Outline 

• Motivation 

• Problem Statement 

– Experimental and FEA results comparison 

• Proposed method 

– Linear Approximation Methods 

• Performance Simulation 

– Based on experimental data. 

– Controllers based on different parametric data 

• Conclusion 
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Motivation 
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•  There is an increasing demand for high performance motor 
controllers.  

• Military ground vehicles 

• On-board vehicle power (125-160kW) 

• Electrification of vehicle loads (cooling fan, HVAC, etc...) 

• Transportation 

• Automotive industry 

• Mass transportation drives, etc.  

•  Better energy generation and utilization 

• Smart Grid 

• Renewable energy 

• The efficiency of a motor drive is dependent on the parameters used 
in the motor controller.  

 

 

 



UNCLASSIFIED 

UNCLASSIFIED 

Motor Model 
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• Motor Types, (Surface PMSM and Interior PMSM) 

 

 

 

 

 

 

 

 

• Windings are distributed in a balanced 3 phase configuration. 

• Rotor magnets, induce a balanced 3 phase back EMF. 
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Three phase model 
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• Electrical model: 
 
 
 
 
 
 
 
 
 
 

• Back EMF voltages, 𝑒𝑎,𝑏,𝑐, are produced by rotational magnetic 
induction.  
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Transformation into the dq axis 

model 
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• Using Park’s transformation matrix:  

 

 

 

 

 

• To transform from 3 phase abc to 3 equivalent axes dq0: 

 

 

• Under balanced condition zero sequence quantities are nullified.  
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dq motor Model 
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•  The motor model: 
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Problem Statement 
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• The real situation, saturation:   
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Experimental Setup 
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•  Schematic diagram 
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Experimental Setup with 

Dynamometer 

22 August 2013 

            

   

                      

 
                                                                    

 

                                         

Inverter/controller 

PMSM Torque Sensor 

Shaft 

Dynamometer 



UNCLASSIFIED 

UNCLASSIFIED 

Experimental Setup with Engine 
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Experimental Characterization 
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• Data collection: 

• The current space vector is swept in the region of interest.  

 

 

 

 

 

 

• Flux calculation from measured data: 
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Characterization Results 

•  PMSM specifications: 

 

 

 

 

 

• Test Setup: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Motor Generator 
Rated power 125 kW 125 kW 

Rated speed 1500 RPM 1900 RPM 

Max speed 5000 RPM 3000 RPM 

Line voltage 

Max current 

No. poles 4 8 
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Generator, Experimental Results 
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Motor, Experimental Results 
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FEA parametric results 
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• Determined using a FEA magnetostatic simulation.  

 

 

 

 

 

 

 

• This type of simulation was used, since it is considerably less 
time consuming than a full transient-magnetic simulation. 
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Proposed Linear approximation 

• d-axis inductance approximation: 
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Proposed Linear approximation 

• q-axis inductance approximation:  
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Proposed Linear approximation 
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Controller Evaluation 

• The performance degradation due to the exclusion of the 

saturation effects is evaluated using a motor controller. 

 

 

 

 

 

 

 

• Controllers based on different parametric information 

were developed and evaluated in the most accurate 

model.    
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Results, Power Losses 
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Results, Torque Performance 
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Generator Torque performance, 
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Voltage Performance 
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• Voltage commands are vital for proper operation of the 

motor drive.  

• Inverters have a voltage limit and field weakening 

performance depends on the voltage command. 
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Current Performance 
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• Motor controller, dq-axis currents commands, as a 

function of torque command at rated speed.  
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Conclusions 

• Including the saturation effects of a PMSM improves the torque 
performance of a motor drive system. 

• Higher torque performance aids in reducing the motor losses. Hence, 
better efficiency is achieved.  

• Increments in the torque performance increases the efficiency of the 
overall system.  

• The piecewise linear approximation accurately describes the non-ideal 
behavior of a PMSM.  

• This approach demonstrated a reduction in copper loss of up to 900W 
(efficiency gain of 1.36%) for a 125kW machine. 

• This method is realizable in the majority of motor control DSPs due to its 
computational efficiency with no additional cost. 
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